Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.
translated by 谷歌翻译
Three-dimensional (3D) freehand ultrasound (US) reconstruction without a tracker can be advantageous over its two-dimensional or tracked counterparts in many clinical applications. In this paper, we propose to estimate 3D spatial transformation between US frames from both past and future 2D images, using feed-forward and recurrent neural networks (RNNs). With the temporally available frames, a further multi-task learning algorithm is proposed to utilise a large number of auxiliary transformation-predicting tasks between them. Using more than 40,000 US frames acquired from 228 scans on 38 forearms of 19 volunteers in a volunteer study, the hold-out test performance is quantified by frame prediction accuracy, volume reconstruction overlap, accumulated tracking error and final drift, based on ground-truth from an optical tracker. The results show the importance of modelling the temporal-spatially correlated input frames as well as output transformations, with further improvement owing to additional past and/or future frames. The best performing model was associated with predicting transformation between moderately-spaced frames, with an interval of less than ten frames at 20 frames per second (fps). Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs. Interestingly, with the proposed approach, explicit within-sequence loss that encourages consistency in composing transformations or minimises accumulated error may no longer be required. The implementation code and volunteer data will be made publicly available ensuring reproducibility and further research.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
在医学图像分析中需要进行几次学习的能力是对支持图像数据的有效利用,该数据被标记为对新类进行分类或细分新类,该任务否则需要更多的培训图像和专家注释。这项工作描述了一种完全3D原型的几种分段算法,因此,训练有素的网络可以有效地适应培训中缺乏的临床有趣结构,仅使用来自不同研究所的几个标记图像。首先,为了弥补机构在新型类别的情节适应中的广泛认识的空间变异性,新型的空间注册机制被整合到原型学习中,由分割头和空间对齐模块组成。其次,为了帮助训练观察到的不完美比对,提出了支持掩模调节模块,以进一步利用支持图像中可用的注释。使用589个骨盆T2加权MR图像的数据集分割了八个对介入计划的解剖结构的应用,该实验是针对介入八个机构的八个解剖结构的应用。结果证明了3D公式中的每种,空间登记和支持掩模条件的功效,所有这些条件都独立或集体地做出了积极的贡献。与先前提出的2D替代方案相比,不管支持数据来自相同还是不同的机构,都具有统计学意义的少量分割性能。
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译
在COVID-19大流行期间,在COVID-19诊断的紧急环境中进行的大量成像量导致临床CXR获取的差异很大。在所使用的CXR投影,添加图像注释以及临床图像的旋转程度和旋转程度中可以看到这种变化。图像分析社区试图通过开发自动化的CoVID-19诊断算法来减轻大流行期间过度拉伸放射学部门的负担,该诊断算法是CXR成像的输入。已利用大量公开的CXR数据集来改善CoVID-19诊断的深度学习算法。然而,公开可用数据集中临床可获得的CXR的可变质量可能会对算法性能产生深远的影响。 COVID-19可以通过图像标签等图像上的非动物特征的算法来推断诊断。这些成像快捷方式可能是数据集特定的,并限制了AI系统的概括性。因此,了解和纠正CXR图像中的关键潜在偏差是CXR图像分析之前的重要第一步。在这项研究中,我们提出了一种简单有效的逐步方法,以预处理Covid-19胸部X射线数据集以消除不希望的偏见。我们进行消融研究以显示每个单个步骤的影响。结果表明,使用我们提出的管道可以将基线共证检测算法的精度提高到13%。
translated by 谷歌翻译
本文涉及分割中的伪标记。我们的贡献是四倍。首先,我们提出了伪标签的新表述,作为一种预期最大化(EM)算法,用于清晰的统计解释。其次,我们纯粹基于原始伪标记,即Segpl,提出了一种半监督的医学图像分割方法。我们证明,SEGPL是针对针对2D多级MRI MRI脑肿瘤分段任务和3D二进制CT肺部肺血管分段任务的半监督分割的最新一致性正则方法的竞争方法。与先前方法相比,SEGPL的简单性允许更少的计算成本。第三,我们证明了SEGPL的有效性可能源于其稳健性抵抗分布噪声和对抗性攻击。最后,在EM框架下,我们通过变异推理引入了SEGPL的概率概括,该推论学习了训练期间伪标记的动态阈值。我们表明,具有变异推理的SEGPL可以通过金标准方法深度集合在同步时执行不确定性估计。
translated by 谷歌翻译
在这项工作中,我们考虑了成对的跨模式图像注册的任务,这可能会受益于仅利用培训时间可用的其他图像,而这些图像从与注册的图像不同。例如,我们专注于对准主体内的多参数磁共振(MPMR)图像,在T2加权(T2W)扫描和具有高B值(DWI $ _ {high-b} $)的T2加权(T2W)扫描和扩散加权扫描之间。为了在MPMR图像中应用局部性肿瘤,由于相应的功能的可用性,因此认为具有零B值(DWI $ _ {B = 0} $)的扩散扫描被认为更易于注册到T2W。我们使用仅训练成像模态DWI $ _ {b = 0} $从特权模式算法中提出了学习,以支持具有挑战性的多模式注册问题。我们根据356名前列腺癌患者的369组3D多参数MRI图像提出了实验结果图像对,与注册前7.96毫米相比。结果还表明,与经典的迭代算法和其他具有/没有其他方式的经典基于测试的基于学习的方法相比,提出的基于学习的注册网络具有可比或更高准确性的有效注册。这些比较的算法也未能在此具有挑战性的应用中产生DWI $ _ {High-B} $和T2W之间的任何明显改进的对齐。
translated by 谷歌翻译
基于人工智能的肺超声成像分析已被证明是整个Covid-19大流行中快速诊断决策支持的有效技术。但是,这种技术可能需要几天或几周的训练过程和超参数调整,以开发智能的深度学习图像分析模型。这项工作的重点是利用“现成”预培训的模型,作为以最小的训练时间为疾病严重程度得分的深度提取器。我们建议在简单和紧凑的神经网络之前使用现有方法的预训练初始化,以减少对计算能力的依赖。在时间限制或资源约束的情况下,例如大流行的早期阶段,计算能力的降低至关重要。在由49位患者组成的数据集中,包括20,000多个图像,我们证明了现有方法作为特征提取器的使用会导致有效分类COVID-19与COVID相关的肺炎严重程度,同时只需几分钟的训练时间。与专家注释的地面真相相比,我们的方法可以在4级的严重程度评分量表上达到超过0.93的准确性,并提供可比的人均区域和全球分数。这些结果表明,在COVID-19患者的临床实践中以及其他呼吸道疾病中,在临床实践中以及在其他呼吸道疾病中的临床实践中快速部署和使用这种最小化适应方法的能力。
translated by 谷歌翻译
通过学习,已经提出了神经网络进行医学图像注册,并具有大量的培训数据,以及图像对之间的最佳转换。这些训练有素的网络可以进一步优化一对测试图像 - 称为测试时间优化。这项工作将图像注册作为一种元学习算法。可以通过对齐训练图像对,同时提高测试时间优化功效来对此网络进行训练;以前被视为两个独立培训和优化过程的任务。假设所提出的元注册以最大化测试时间优化在网络的“外部”元优化中的效率和有效性。对于通常是时间关键但训练数据中限制的图像引导应用程序,将潜在的速度和准确性与经典注册算法,无元学习的注册网络以及没有测试时间优化数据的单对优化进行了比较。本文使用来自108名前列腺癌患者的临床超声超声图像数据进行了实验。这些实验证明了元注册方案的有效性,该方案相对于现有基于学习的方法而产生的性能显着提高。此外,由于其快速的测试时间优化过程,元注册在一小部分时间内与经典迭代方法相当。
translated by 谷歌翻译